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We have developed a fully nonlocal model to describe the dynamic behavior of nematic liquid-crystal
elastomers. The free energy, incorporating both elastic and nematic contributions, is a function of the material
displacement vector and the orientational order parameter tensor. The free energy cost of spatial variations of
these order parameters is taken into account through nonlocal interactions rather than through the use of
gradient expansions. We also give an expression for the Rayleigh dissipation function. The equations of motion
for displacement and orientational order are obtained from the free energy and the dissipation function by the
use of a Lagrangian approach. We examine the free energy and the equations of motion in the limit of
long-wavelength and small-amplitude variations of the displacement and the orientational order parameter. We
compare our results with those in the literature. If the scalar order parameter is held fixed, we recover the usual
viscoelastic theory for nematic liquid crystals.
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INTRODUCTION

Liquid-crystal elastomers �LCEs�, first proposed by de
Gennes �1� and synthesized by Finkelmann et al. �2�, are
solid orientationally ordered rubbers. They consist of weakly
cross-linked liquid-crystal polymers with orientationally or-
dered side- or main-chain mesogenic units. The salient fea-
ture of LCEs is the coupling between mechanical deforma-
tion and orientational order �3�. As a result of this coupling,
these materials can exhibit exceptionally large responses to
external stimuli, suggesting a variety of potential applica-
tions. These range from artificial muscles �4� to mechanically
tunable photonic band gap materials �5� and bifocal contact
lenses �6�.

Much of the experimental and theoretical work on LCEs
has been carried out during the past decade. Equilibrium
properties are relatively well understood, but dynamic phe-
nomena have not yet been thoroughly characterized. Since
these often involve large deformations and complex vis-
coelastic behavior, they are incompletely understood. In
nematic LCEs, both the scalar order parameter and director
orientation are coupled to the mechanical deformation. At
temperatures far from the nematic-isotropic transition, strain-
induced changes of the scalar order parameter are typically
small, and frequently assumed to be spatially uniform �7�.
However, some of the most interesting aspects of nematic
elastomers, such as changes in shape due to excitations, are
associated with nonuniform changes in the order parameter
tensor; see, e.g., Refs. �8–10�.

We present a nonlocal continuum description of nematic
LCEs. Our fundamental variables are the displacement vec-
tor of cross-links and the orientational order parameter ten-
sor. We ignore chain entanglements, and allow the chains to
cross freely. We also ignore heat flow, and keep the tempera-
ture fixed. Since gradient expansions of the free energy can
lead to ill-posedness of the problem of its minimization �11�,
we use a nonlocal formalism, where the effects of spatial
variations of the displacement and order parameter on the
free energy are taken into account via the fully nonlocal in-

teractions. We also propose a Rayleigh dissipation function,
which is local due to the short range of the dissipative inter-
actions. Using a Lagrangian approach, we obtain the equa-
tions of motion for the material displacement and the orien-
tational order parameter. Finally, we examine the free energy
and the equations of motion in the limit of long-wavelength
and small-amplitude variations of displacement and orienta-
tional order parameter, and compare our results with those
existing in the literature.

I. FREE ENERGY

A. The elastic free energy

The elastic part of the free energy of either an isotropic or
a liquid-crystal elastomer in a continuum description can be
written in terms of nonlocal interactions between connected
cross-links. In our formalism,

Fel =
1

2
� �oPo�r,r��g�r + R,r� + R��d3r d3r� �1�

where �o is the cross-link density, Po is the probability den-
sity for finding the ends of a polymer chain at r and r� in the
undeformed sample, and g is the interaction kernel. R�r�
denotes the displacement of a material point from its original
position r in the undistorted sample, and the vector X=r
+R is the Eulerian, while r is the Lagrangian coordinate. The
integrals are taken over the sample volume. In an isotropic
system, the probability density of finding the ends of a
polymer chain of length L at r and r� is given by

Piso�r,r�� = � 3

2�La
�3/2

exp�−
3�r� − r���Lo��

−1 �r� − r���
2La

�
�2�

where a is the persistence or step length, and Lo
−1 is the

dimensionless inverse step-length tensor. Since the system is
isotropic, Lo

−1 is just the identity.

PHYSICAL REVIEW E 74, 061802 �2006�

1539-3755/2006/74�6�/061802�8� ©2006 The American Physical Society061802-1

http://dx.doi.org/10.1103/PhysRevE.74.061802


In the anisotropic LCE system, following Warner and
Terentjev �3�, we take

Po�r,r�� = � 3

2�La
�3/2 1

�det Lo�1/2

�exp�−
3�r� − r���Lo��

−1 �r� − r���
2La

� �3�

where Lo�� is the effective dimensionless step-length tensor
in the undeformed sample, and Lo appears in the denomina-
tor as a result of normalization. The interaction kernel is the
free energy of a Gaussian coil, given by

g�r + R,r� + R�� = − kT ln P�r + R,r� + R�� �4�

where k is Boltzmann’s constant, T is the temperature, and
P�r ,r�� is the probability density for the coil ends, given by

P�r,r�� = � 3

2�La
�3/2 1

�det L�1/2

�exp�−
3�r� − r���L��

−1 �r� − r���
2La

� �5�

where L�� is the effective dimensionless step-length tensor in
the deformed sample. In general, L�� depends on the degree
of orientational order, and hence on the order parameter
tensor. The free energy then takes the form

Fel
c =

1

2
kT� �oPo�r,r��� 3

2La
�r�� + R�� − r� − R��

�L��
−1 �r�� + R�� − r� − R�� +

1

2
ln det L�d3r d3r�,

�6�

omitting an additive constant. By writing the free energy as
F=�F d3r, we have, explicitly for the elastic free energy
density,

Fel
c �r� =

1

2
kT�o� 3

2�La
�3/2� 1

�det Lo�1/2

�exp�−
3�r� − r���Lo��

−1 �r� − r���
2La

�
�� 3

2La
�r�� + R�� − r� − R��L��

−1 �r�� + R�� − r� − R��

+
1

2
ln det L�d3r�. �7�

Compressibility

The expression for the elastic free energy above describes
the entropic contributions associated with changing the
distance between the end points of polymer chains. It does
not describe van der Waals or steric interactions responsible
for the condensed phase of the system and for determining
bulk compressibility. Experimentally, it is found that most
rubbers and liquid-crystal elastomers are nearly volume

conserving. Rather than constructing a more detailed free
energy, capable of producing an equation of state for the
system, we therefore propose two approaches for enforcing
volume conservation. Volume conservation requires that

J = det���� +
�R�

�r�
� = 1. �8�

The first approach to enforce this is include in the free
energy density the term

1

2
B�J − 1�2 �9�

which penalizes volume change. The quantity B corresponds
to the bulk modulus and approaches infinity in the limit that
the elastomer becomes incompressible. Alternately, one may
include a potential energy density function P�R� in the free
energy which is determined by the requirement that Eq. �8�
remain satisfied. P may be regarded as an internal pressure.
Both approaches accomplish the desired result; here we
choose the first, and write for the elastic contribution to the
free energy density

Fel�r� =
1

2
kT�o� 3

2�La
�3/2� 	 1

�det Lo�1/2

�exp�−
3�r� − r���Lo��

−1 �r� − r���
2La

��	
�� 3

2La
�r�� + R�� − r� − R��L��

−1 �r�� + R�� − r� − R��

+
1

2
ln det L�
d3r� +

1

2
B�J − 1�2. �10�

B. The nematic free energy

The free energy associated with liquid-crystalline order of
the mesogenic constituents of the elastomer can be written in
terms of the nonlocal dispersion interactions using an inho-
mogeneous mean field approach. We assume the mesogens
are effectively cylindrically symmetric, with the symmetry

axis along the unit vector l̂. The orientation of the mesogen is
specified by the symmetric, traceless tensor

	�� �
1

2
�3l�l� − ���� �11�

where l� is the �th cartesian component of l̂ and ��� the
Kronecker delta. This description occurs naturally when con-
sidering anisotropic dispersion forces �12� and retains the
inversion symmetry of the nematic phase �14�. The
orientational order parameter Q�� is

Q�� � �	�� �12�

where the angular brackets denote the ensemble average.
Q�� is real, symmetric, and traceless; it can be written as
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Q = −
1

2
�s − p�L̂L̂ −

1

2
�s + p�M̂M̂ + sN̂N̂ �13�

where the eigenvector N̂ associated with the largest
eigenvalue s is the nematic director;

s = � 1

2
�3�l̂ · N̂�2 − 1�� �14�

and

p = � 3

2
��l̂ · L̂�2 − �l̂ · M̂�2�� �15�

are the uniaxial and biaxial scalar order parameters. To retain

conventional notation, we write the nematic director N̂= n̂.
The biaxial order parameter p can be significant in strongly
deformed systems.

The interaction energy of two mesogens located at
X=r+R and X�=r�+R� due to London–van der Waals
dispersion interactions is of the form

E12 = − C
J��
��X − X������ + �a	���X����
� + �a	
��X���

�X − X��6

�16�

where C is the interaction strength, and �a is the relative
polarizability anisotropy of the mesogen, given by

�a =
2��� − ���
�2�� + ���

�17�

where �� and �� are the polarizabilities parallel and

perpendicular to l̂. The directional coupling tensor J��
� is

J��
��X − X�� � �3
Z�Z


Z2 − ��
��3
Z�Z�

Z2 − ���� �18�

where Z� is a component of the vector Z=X�−X. In
the mean field approximation, at constant mesogen density
�m, the single-particle pseudopotential for a particle with
orientation 	�� in the bulk becomes �12�

E�X,	��� = − �mUo�X� − �m	���X�U���X�

−
3

2
�m�aC�

�X−X���d

�
�Q���X�� − Q���X��Z�Z�

�X − X��8
d3X�

− �m�	���X� −
1

2
Q���X��Q
��X�U��
��X�

−
1

2
�m�a

2CQ���X��
�X−X���d

J��
��Ẑ�

�
�Q
��X�� − Q
��X��

�X − X��6
d3X� �19�

where d=d�Q�X� ,Q�X��� is the distance of closest
approach, and

Uo�X� � 3C�
�X−X���d

1

�X − X��6
d3X�, �20�

U���X� � 3�aC�
�X−X���d

Z�Z�

�X − X��8
d3X�,

U��
��X� � �a
2C�

�X−X���d

J��
��Ẑ�
�X − X��6

d2X�. �21�

The distance of closest approach d for anisometric me-
sogens is a function of their relative orientation, and hence,
on the average, a function of their the nematic order param-
eters Q��. It is well known that these steric interactions are
required for the correct description of the nematic phase,
including its deformations �15,16�. The nematic free energy
density at X is given, to within an additive constant, by

Fnem�X� = − �mkT ln� exp�−
E�X,	���

kT
�d2l̂ . �22�

For continuous deformations, X is a single-valued function
of r, and the free energy density can be expressed in terms of
Lagrangian coordinates. Assuming incompressibility,
�F�r�d3r=�F�X�d3X, and the nematic free energy density is
given, explicitly, by

Fnem�r� = �mE1�r� − �mkT ln� exp�−
E2�r,	���

kT
�d2l̂

+ �mEnonlocal�r� , �23�

where the single-particle pseudopotential, as a function of
Lagrangian coordinates, is E�r ,	���=E1�r�+E2�r ,	���
+Enonlocal�r� and

E1�r� � − �mUo�r� +
1

2
�mU��
��r�Q���r�Q
��r� , �24�

E2�r,	��� � − �m	���r�U�� − �mU��
��r�	���r�Q
��r� ,

�25�

Enonlocal�r� � −
3

2
�m�aC�

�Z��d

�Q���r�� − Q���r��Z�Z�

�Z�r,r���8
d3r�

−
1

2
�m�a

2C�
�Z��d

J��
��Ẑ�

�
Q���r��Q
��r�� − Q
��r��

�Z�r,r���6
d3r� �26�

where Z�r ,r��=X�−X=r�+R�r��−r−R�r� as before.
For simplicity, it may be assumed that the dependence of

the distance of closest approach d does not depend on
nematic order. In this case, the nematic free energy density
simplifies to give
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Fnem�r� =
1

2
�m

2 UQ��
2 �r� − �mkT ln

�� exp��mU

kT
	���r�Q���r��d2l̂ +

1

2
�mU

���Z��dJ��
��Ẑ�
Q���r��Q
��r� − Q
��r���

�Z�r,r���6
d3r�

�27�

where

U =
4�

5

�a
2C

d3 �28�

and we have neglected the constant term

− �m
2 Uo = − �m

2 4�C

d3 . �29�

The first two terms in Eq. �27� constitute the tensor version
of the local Maier-Saupe free energy, while the nonlocal
third term describes the free energy cost of inhomogeneities
in the order parameter field �12�. The two contributions Eqs.
�10� and �23� or �27� give

F�r� = Fel�r� + Fnem�r� , �30�

the total free energy density for the elastomer.

II. EQUATIONS OF MOTION

The dynamical equations can be obtained from the gener-
alized Lagrange’s equations. Two scalar functions must be
specified, the Lagrangian

L =� �Ekin − F�d3r �31�

where Ekin is the kinetic energy density, and F=Fel+Fnem
is the free energy density, and the Rayleigh dissipation
function R. We ignore contributions from the nematic order
parameter to the kinetic energy, and so have

Ekin�r� =
1

2
�Ṙ2�r� �32�

where � is the mass density.
We write the local Rayleigh dissipation density function

as an expansion in terms of Q̇�� and the velocity gradient

��
e Ṙ�, and have, to lowest order,

R = TṠ =
1

2
���
�

�2� Q̇��Q̇
� + ���
�
�3� ���

e Ṙ��Q̇
�

+
1

2
���
�

�4� ���
e Ṙ�����

eṘ
� �33�

where the spatial derivatives are with respect to Eulerian
coordinates. We assume that terms that depend on the

gradient of the order parameter tensor �
eQ̇�� are small com-

pared to the other terms present, and are ignored. The vis-

cous coefficients ���
� are constructed from �ij and Qij
0 with

the appropriate symmetry. The dissipation is quadratic in the
generalized velocities. The associated change in the free en-
ergy, obtained by expanding the free energy about an equi-
librium state, is quadratic in changes of the order parameters.
In analogy to the usual practice in nematodynamics, the vis-
cous coefficients are taken to have the same structure as the
coefficients of the corresponding quadratic terms in the free
energy expansion.

The equations of motion are obtained by solving

� � d

dt

�Ekin

�R
˙

+
�F
�R

+
�R

�Ṙ

�d3r = 0 �34�

or

� � d

dt

�Ekin

�R
˙

+
�F
�R

− �

e �R

��

e Ṙ

�d3r = 0 �35�

and

� � �F
�Q��

+
�R

�Q̇��

�d3r = 0. �36�

Evaluating derivatives gives the equations of motion for the
material points

�R̈� = −
�F
�R�

+ ���
�
�3� ��

e Q̇
� + ���
�
�4� ���

e ��
eṘ
� �37�

and for the nematic order parameter

���	�
�2� Q̇	� = −

�F
�Q��

− �	���
�3� ���

eṘ	� . �38�

In the above, we have relied on the Lagrangian approach
to obtain the equations of motion, which implicitly conserve
linear and angular momentum. A more direct alternative ap-
proach would have been to consider the equations of
continuity for momentum density explicitly, similar to �13�.

The equations of motion �37� and �38�, together with the
free energy densities Eqs. �10� and �23� or �27� are our main
results. They form the basis for our subsequent studies of
deformations in nematic elastomers.

III. SMALL-AMPLITUDE LONG-WAVELENGTH
APPROXIMATION

A. Free energy

1. The elastic free energy

The free energy in our model is

F�r� = Fel�r� + Fnem�r� �39�

where Fel�r� and Fnem�r� are given by Eqs. �10� and �23�
in terms of the step-length tensor L���Q� and the distance of
closest approach d(Q�X� ,Q�X��). This is the free energy
density in its most general, nonlocal form. We now consider
approximations to this free energy density to examine its
behavior and to make contact with existing results in the
literature.
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First, we assume that the nematic order parameter Q�� in
the deformed system differs only slightly from the order
parameter Q��

0 in the undeformed system, and write

Q���r� = Q��
0 �r� + ����r� �40�

where ��� is small compared to unity. We shall refer to ���

as the deviation of the order parameter from its value Q��
0 �r�

in the undeformed system. Second, we assume that the wave-
lengths of deformations are long compared to the relevant
interaction lengths a and �La, and that the integrand can be
adequately approximated by a gradient expansion to second
order. The deviation ����r�� of the nematic order parameter
at location r� can then be expressed in terms of its value at r;

����r�� = ����r� + ���,
�r�z
 +
1

2
���,
��r�z
z� + ¯ ,

�41�

where z��r�� −r� is the distance in Lagrangian coordinates,
and the comma denotes differentiation so that
f�,���f� /�x�. The displacement R�r�� can be similarly
expanded in terms of its value at r to give

R���r�� = R��r� + R�,
�r�z
 +
1

2
R�,
��r�z
z� + ¯ . �42�

We expand the free energy density to second order in � and
R, with the highest-order terms �2, R2, and R�, respectively
and permit at most two gradients in the expression. It is
straightforward to carry out the expansion. We define ���

�R�,�, Q���Q��� 1
2 �r+r���, assume that L��=L���Q�, and

take Qo�� to be spatially uniform. The elastic part of the free
energy density is then given by

Fel�r� =
1

2
���
�

�2,el� ����r��
��r� + ���
�
�3� ����
�

+
1

2
���
�

�4� ����
� �43�

where the coefficients are

���
�
�2,el� = ���3

2La

�2L	�
−1

�Q̄�� � Q̄
�

�
Q̄=Q0

�z	z�

+ �12 �2 ln det L

�Q̄�� � Q̄
�

�
Q̄=Q0

� , �44�

���
�
�3� = �� 3

La� �L�	
−1

�Q̄
�

�
Q̄=Q0

�z	z�� , �45�

���
�
�4� = �� 3

La
Lo�


−1 �z�z�� , �46�

where

�z� ¯ z� � � Po�z�z� ¯ z�d3z �47�

and

� �
1

2
kT�o� 3

2�La
�3/2

�48�

and we have omitted an additive constant. Incompressibility
requires that ����0. It is straightforward to show that,
sufficiently far from any surface,

�z�z� =
1

3
Lo��La . �49�

Next, we assume a simple dependence of the step-length
tensor on the nematic order parameter,

L�� = ��� + bQ��, �50�

where b is the dimensionless step-length anisotropy. L−1 and
detL can be evaluated at once using the Cayley-Hamilton
theorem which gives

L−1 =

L2 − L tr L +
1

2
��tr L�2 − tr�L2��I

−
1

2
tr�L2�tr L +

1

3
tr�L3� +

1

6
�tr L�3

�51�

and

det L =
1

3
tr�L3� +

1

6
�tr L�3 −

1

2
tr�L2�tr L , �52�

where tr L�L�� is the trace of L and I is the identity.
The term ���
�

�4� ����
� has the expected form of the
elastic energy of an anisotropic solid; in our model, the
anisotropy arises through the nematic order parameter Q0 of
the undeformed sample.

2. The nematic free energy

We expand both the local and nonlocal parts of the
nematic part of the free energy density in Eq. �23� similarly,
and obtain

Fnem =
1

2
���
�

�2,nem�����
� +
1

2
K��
��

�nem� ���,�
�,�. �53�

Terms from Eq. �23� containing ��� are of higher order in
wave number and do not appear. The coefficients ���
�

�2,nem� and
K��
��

�nem� are functions of Qo; they can be determined for any
particular choice of the distance of closest approach d. For
example, if d does not depend on nematic order, the nematic
free energy density is given by Eq. �27�, and it follows that

���
�
�2,nem�����
� = A������ �54�

and

K��
��
�nem� ���,�
�,� = B�11

14
���,
���,
 −

12

14
���,���
,
�

�55�

where A and B are positive constants �12�.
The total free energy density for the nematic elastomer,

expanded to second order, is
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F =
1

2
���
�

�2� ����
� + ���
�
�3� ����
� +

1

2
���
�

�4� ����
�

+
1

2
K��
�����,�
�,� +

1

2
B�����2 +

1

2
C�����2 �56�

where ���
�
�2� ����
�

�2,el� +���
�
�2,nem� and K��
���K��
��

�nem� . Since
there are bilinear terms, imposing a strain would cause the
system to relax, via the coupling described by the second
term on the right-hand side, to a nonvanishing order param-
eter deviation. The quantities B and C may be regarded as
Lagrange multipliers enforcing the constraints of constant
volume and traceless nematic order parameter. The free
energy density in Eq. �56� is positive definite.

Equation �56� shows that the presence of the cross-linked
elastomer matrix changes the nematic-isotropic transition
temperature, but does not, to lowest order, contribute to the
elastic constants of the nematic. A change in the transition
temperature due to contributions from the elastomer has been
pointed out in Ref. �17�, where only a scalar nematic order
parameter was considered.

In our second-order gradient approximation, we have
omitted surface terms. It is well known that surface terms
that arise from transforming second gradient terms to
squared first gradient terms can lead to a free energy that is
unbounded from below, and to an ill-posed minimization
problem �11�. This can be avoided by using the fully nonlo-
cal free energy to obtain the dynamical equations, and only
then perform the gradient expansion �12�.

3. Limiting cases

If the reference state is isotropic, on enforcing incom-
pressibility, we have for the uniform contribution of the
elastic free energy

Fel
un =

�

4
�b�
� − 2�
�

S �2, �57�

omitting a surface term. This leads to a soft �spontaneous�
deformation when �
�

S = 1
2b�
�, where �
�

S is the symmetric
part of the deformation tensor �
�.

It is straightforward to show that Eq. �43� contains the
usual continuum elastic free energy density in terms of the
nematic director �3�. We take the scalar order parameter s to
be constant, and writing n=no+�n obtain

��� =
3

2
s0�n�

0�n� + n��n� + �n��n�� . �58�

We arrive at the usual free energy by considering terms in
Eq. �43� to second order in the director deviation �n̂ and
enforcing ���=0.

B. Equations of motion

The general equations of motion are given, in terms of the
dissipation and the nonlocal free energy, in Eqs. �37� and
�38�. We now consider approximations to these to examine
the behavior of the system and to make contact with existing
results in the literature. As before, we assume that the wave-

lengths of deformations are long compared to the relevant
interaction lengths a and �La, and that the deviation of the
order parameter is much smaller than unity. We also assume
here that the displacement R is small compared to r, and we
therefore do not distinguish between gradients in the Euler
and Lagrangian coordinates. The equations of motion �37�
and �38� become

�R̈� =
�

�x�
� �F

�R�,�
+ ���
�

�3� �̇
� + ���
�
�4� Ṙ
,�� �59�

and

���
�
�2� �̇
� = −

�F
����

+
�

�x


�F
����,


− �
���
�3� Ṙ
,� �60�

with F given by Eq. �56�. We assume the viscous coefficients
���
�

�k� to be proportional to the coupling tensors ���
�
�k� in Eq.

�56�, as is commonly done in nematodynamics. These can be
written in terms of s0 and n̂0, the scalar nematic order pa-
rameter and director in the undeformed sample, as shown in
the Appendix.

1. Constant scalar nematic order parameter

For the case of constant scalar nematic order parameter,
we write the order parameter deviation as

��� =
3

2
s0�n�

0�n� + n�
0�n� + �n��n�� �61�

since ���=0 and n�n�=1. From the expressions for the vis-
cosity tensors in the Appendix , we obtain the viscous stress

	
�� =
�R
� �̇�


= �1n

0n�

0�n�
0 �̇��

S n�
0� + �2n


0N� + �3N
n�
0 + �4�̇�


S

+ �5n

0�̇��

S n�
0 + �6n�

0 �̇�

S n�

0 �62�

and viscous director field

g
� = −
�R

��ṅ


= �1N
 + �2n�
0 �̇�


S �63�

where N
���ṅ
− �̇
�
A n�

0�, and ���
S and ���

A are the symmetric
and antisymmetric parts of ���. The viscous stress is in the
Ericksen-Leslie form �18,19�, and the coefficients are given
by �1=−��r−1�2 /r, �2=��1−r�, �3=��1−r� /r, �4=2�,
�5=��r−1�, and �6=��1−r� /r. The parameter r� l� / l�is a
measure of the anisotropy of the polymer chain. The
coefficients obey the Parodi relations �2+�3=�6−�5,
�1=�2−�3 and �2=�5−�6. The dissipation function is posi-
tive definite �19� because for ��0 the following inequalities
are satisfied: �4�0, 2�4+�5+�6�0, 2�1+3�4+2�5+2�6
�0, and −4�1�2�4+�5+�6�� ��2+�3−�2�2.

2. Small Q0

We next consider the case when the nematic order param-
eter Q0 in the undeformed sample is small, and expand to
second order in Q0 and �. The viscosity coefficients become

���	�
�2� =

�

2
�����	� + ��	���� , �64�
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���
�
�3� = −

�

2
���
��� + ��
���� + ��Q�


0 ��� + ��
Q��
0 � ,

�65�

which gives the dynamical equation for the nematic order
parameter

�̇�� = −
1

�
� �F

����

− �

�F
�����

� + �̇��
S + ��̇�

A Q�
0 − Q�

0 �̇�
A �

− �Q�
0 �̇�

S + �̇�
S Q�

0 � . �66�

This is in agreement with the results of Olmsted and Gold-
bart �20� for pure nematics, except for the last term in Eq.
�66�, which they did not explicitly give since they regarded it
as a higher-order reactive term. This type of term, and
higher-order terms in Q0, appear in a nonlinear expansion in
their formalism. A similar result in pure nematic theory is
obtained using the Poisson-bracket approach by Stark and
Lubensky �21� and by Pleiner et al. �22� in a polymeric
system.

3. Spatially uniform strain

Finally, we consider the case when a uniform strain is
applied to the sample, and the nematic tensor order param-
eter is spatially uniform. The equilibrium configuration can
be obtained from the stationary solution of Eq. �60�,
�F /����=0, which gives

���
�
�2� �
� + �
���

�3� �
� = 0 �67�

where ���=0. This expression, together with the explicit
expressions for the coefficients, shows how the order param-
eter tensor responds to applied strain. If the strain is along
the initial director direction, a change in the scalar order
parameter results. Strain applied perpendicular to the director
leads to biaxiality, but in this small deformation approxima-
tion the director remains constant. Shearing the sample gives
rise to off-diagonal terms in the order parameter tensor,
implying director rotation.

IV. SUMMARY

In this paper, we propose a nonlocal continuum model to
describe the dynamics of nonuniform deformations in nem-
atic elastomers in terms of the material displacement vector
and the nematic order parameter tensor. We have derived
expressions for the nonlocal free energy including contribu-
tions from both elastic and nematic interactions. Our formal-
ism for elastic interactions is based on the work of Warner
and Terentjev �3�, but note that other general approaches
have been developed �23,24�. We have obtained equations of
motion for the material displacement and the order parameter
from the free energy and the Rayleigh dissipation function
via a Lagrangian formalism. The equations of motion are
expected to be valid in the case of large and inhomogeneous
deformations and strains. We point out nonetheless that
discrepancies can exist between results obtained via
Lagrangian approaches and other methods �25,26�.

We have examined the behavior in the limit of long-
wavelength and small-amplitude variations of the displace-
ment and the orientational order parameter. In this limit, the
predictions of our model are in agreement with existing re-
sults in the literature. To facilitate the comparison, we have
carried out a gradient expansion of the free energy density
instead of the dynamical equations in the long-wavelength
limit, and ignored surface contributions when converting
second gradient to squared gradient terms. Incorporating
these surface terms would lead to an ill-posed minimization
problem �11,12�. The formally correct approach is to first
derive the dynamical equations in fully nonlocal form, as we
have done, and only then take the long-wavelength limit
�12�. More detailed work, including numerical simulations,
is currently under way.
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APPENDIX

The viscous coefficients ���
�
�k� are proportional to the cou-

pling tensors ���
�
�k� in Eq. �56�. These can be written in terms

of s0 and n̂0, the scalar nematic order parameter and director
in the undeformed sample. They become, to second order in
Qo, assuming Lij =�ij +bQo and ignoring terms which do not
contribute,

���
�
�2,el� = ��2����
��� + �����
� + ��2����
n�

0n�
0 + ��
n�

0n�
0

+ ���n�
0n


0 + ���n�
0n


0� + 
�2�n�
0n�

0n

0n�

0 , �A1�

���
�
�3� = ��3����
��� + �����
� + ��3��n�

0n

0��� + n�

0n�
0��
�

+ 
�3����� − n�
0n�

0��
�, �A2�

���
�
�4� = �	��
��� + � l�

l�

− 1�n�
0n


0��� + � l�

l�

− 1�n�
0n�

0��


+ �� l�

l�

− 1�� l�

l�

− 1�n�
0n�

0n

0n�

0 , �A3�

where we define

l� � 1 + bs0, �A4�

l� � 1 − bs0/2, �A5�

and the scalar coefficients in Eqs. �A1� and �A2� are given by

��2� �
�

det Lo

b2�1 + bs0�
4

=
�b2

4

1

l�
2 , �A6�

��2� � −
�

det Lo

3

8
b3s0 =

�b2

4
� 1

l�l�

−
1

l�
2 � , �A7�
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�2� �
�

det Lo

9

8
b2 �bs0�2

1 + bs0 =
�b2

2
� 1

l�

−
1

l�
�2

, �A8�

��3� �
�

det Lo
�−

b

2
− b

bs0

4
+ b

�bs0�2

4
� = −

�b

2l�

, �A9�

��3� �
�

det Lo

3

4
b2s0�1 −

bs0

2
� =

�b

2
� 1

l�

−
1

l�
� . �A10�

The corresponding viscosity tensors are given by replacing �
with ��c� in the above equations, where c is a constant.
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